FINAL EXAM (1h50)

Maximal Score: 200 points

Show ALL steps and make sure I understand how you get the answer to have full credit! No material allowed!

Wednesday december 18th

Problem 1: (\star) 10 points

Let $a = 2^4 13^2 19$ and $b = 2^3 5^2 13$. Give the prime factorization of $gcd(a^2, b^3)$

Problem 2: (\star) 10 points

Show that 4(29!) + 5! is divisible by 31. (Hint: Wilson's theorem!)

Problem 3: (\star) 10 points

Give a non-trivial factor of $2^{52} + 1$.

Problem 4: (\star) 10 points

Find all right angled triangles with coprime integer sides and base of length 28. (Hint: Pythagorean triples!)

Problem 5: (\star) 10 points

Prove that $\sqrt{7}$ is irrational. (Hint: By contradiction!)

Problem 6: (*) 10 points Suppose that $n^2 = \sum_{d|n} f(d)$. Evaluate f(8).

Problem 7: (*) **15 points** You have chosen to do RSA cryptography with modulus n = pq where p = 7 and q = 19

- 1. Compute the least common multiple $[\phi(p), \phi(q)]$.
- 2. Suppose that the encode exponent is e = 5. Calculate a decode exponent d.

Problem 8: (\star) 20 points

- 1. Use the Eulidean algorithm to compute the greatest common divisor (263, 271).
- 2. Solve the linear equation 263x 271y = 5 or explain why there are no solutions.

Problem 9: (\star) **10 points** Solve the simultaneous congruences equations :

$$\begin{cases} x \equiv 5 \mod 7 \\ x \equiv 2 \mod 5 \end{cases}$$

Problem 10: (\star) **20 points** Say if the following Gaussian integers are prime and when they are not give a prime factorization in $\mathbb{Z}[i]$:

- 1. 7
- 2. 1 + 2i

Problem 11: (\star) 15 points

- 1. Evaluate $\phi(1500)$.
- 2. Compute the remainder when 7^{1203} is divided by 1500.

Problem 12: (*) 10 points Use induction to prime that $6^n \equiv 5n + 1 \mod 25$ for all positive integer n.

Problem 13: (\star) 20 points

- 1. Find the continued fraction expansion of $\sqrt{30}$.
- 2. Find the quadratic α with continued fraction expansion $\alpha = [\overline{2,3}]$.

Problem 14: (\star) 30 points

1. Evaluate $\left(\frac{293}{331}\right)$.

1

- 2. Prove that the Diophantine equation $x^2 + y^2 = 12z + 7$ does not have any solution. (Hint: modulo 12.)
- 3. Prove that the quadratic congruence $x^2 4xy + 5y^2 \equiv 0 \mod 11$ has no solution.

 $^{^{1}(\}star) = \text{easy }, (\star\star) = \text{medium}, (\star\star\star) = \text{challenge}$